This tutorial covers the process of deploying Keras models, including exporting models, deploying on different platforms, and optimizing models for deployment.

Exporting Models

Exporting models is the first step towards deploying them. Keras models can be saved and loaded in different formats.

Saving Models

Keras models can be saved in two formats: HDF5 and SavedModel.

HDF5 Format

  model.save('model.h5')
  

SavedModel Format

  model.save('saved_model/')
  

Loading Models

Models saved in HDF5 or SavedModel format can be loaded back into Keras.

Loading from HDF5

  from keras.models import load_model

model = load_model('model.h5')
  

Loading from SavedModel

  from keras.models import load_model

model = load_model('saved_model/')
  

Model Deployment on Different Platforms

Keras models can be deployed on various platforms for different use cases.

TensorFlow Serving

TensorFlow Serving is a flexible, high-performance serving system for machine learning models designed for production environments.

Exporting the Model for TensorFlow Serving

  import tensorflow as tf

model.save('saved_model/', save_format='tf')
  

Serving the Model

  tensorflow_model_server --rest_api_port=8501 --model_name=my_model --model_base_path="/path/to/saved_model/"
  

Flask

Flask is a lightweight WSGI web application framework in Python that can be used to deploy machine learning models.

Creating a Flask App

  from flask import Flask, request, jsonify
from keras.models import load_model
import numpy as np

app = Flask(__name__)
model = load_model('model.h5')

@app.route('/predict', methods=['POST'])
def predict():
    data = request.json
    prediction = model.predict(np.array(data['input']))
    return jsonify({'prediction': prediction.tolist()})

if __name__ == '__main__':
    app.run(port=5000, debug=True)
  

FastAPI

FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.7+ based on standard Python type hints.

Creating a FastAPI App

  from fastapi import FastAPI
from pydantic import BaseModel
from keras.models import load_model
import numpy as np

app = FastAPI()
model = load_model('model.h5')

class PredictionRequest(BaseModel):
    input: list

@app.post('/predict')
def predict(request: PredictionRequest):
    data = np.array(request.input)
    prediction = model.predict(data)
    return {'prediction': prediction.tolist()}

if __name__ == '__main__':
    import uvicorn
    uvicorn.run(app, host='0.0.0.0', port=8000)
  

TensorFlow Lite

TensorFlow Lite is an open-source deep learning framework for on-device inference.

Converting a Model to TensorFlow Lite

  import tensorflow as tf

model = tf.keras.models.load_model('model.h5')
converter = tf.lite.TFLiteConverter.from_keras_model(model)
tflite_model = converter.convert()

with open('model.tflite', 'wb') as f:
    f.write(tflite_model)
  

Running Inference with TensorFlow Lite

  import numpy as np
import tensorflow as tf

interpreter = tf.lite.Interpreter(model_path='model.tflite')
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()

input_data = np.array([[...]], dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()

output_data = interpreter.get_tensor(output_details[0]['index'])
print(output_data)
  

Model Optimization for Deployment

Optimizing models for deployment can improve performance, reduce latency, and decrease resource consumption.

Model Quantization

Quantization reduces the precision of the numbers used to represent your model’s parameters, which can result in smaller model size and faster inference.

Post-Training Quantization

  converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]
tflite_model = converter.convert()
  

Model Pruning

Pruning removes weights that contribute less to the output, which can reduce model size and improve inference speed.

Applying Pruning

  import tensorflow_model_optimization as tfmot

prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude

pruning_params = {
    'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(
        initial_sparsity=0.0,
        final_sparsity=0.5,
        begin_step=0,
        end_step=end_step
    )
}

model_for_pruning = prune_low_magnitude(model, **pruning_params)
model_for_pruning.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model_for_pruning.fit(x_train, y_train, epochs=2)
  

TensorFlow Model Optimization Toolkit

The TensorFlow Model Optimization Toolkit provides a suite of techniques for optimizing machine learning models for deployment and execution.

Applying Optimization

  import tensorflow_model_optimization as tfmot

model = tf.keras.models.load_model('model.h5')

# Pruning
prune_low_magnitude = tfmot.sparsity.keras.prune_low_magnitude
pruning_params = {'pruning_schedule': tfmot.sparsity.keras.PolynomialDecay(initial_sparsity=0.0, final_sparsity=0.5, begin_step=0, end_step=end_step)}
model = prune_low_magnitude(model, **pruning_params)

# Quantization-aware training
quantize_model = tfmot.quantization.keras.quantize_model
model = quantize_model(model)

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
model.fit(x_train, y_train, epochs=2)
  

By following these steps, you can effectively deploy and optimize your Keras models for various platforms and applications.

Learn How To Build AI Projects

Now, if you are interested in upskilling in 2024 with AI development, check out this 6 AI advanced projects with Golang where you will learn about building with AI and getting the best knowledge there is currently. Here’s the link.

Last updated 17 Aug 2024, 12:31 +0200 . history